
MATHEMATICS OF COMPUTATION 
Volume 65, Number 216 
October 1996, Pages 1477-1484 

THE BKK ROOT COUNT IN Cn 

T. Y. LI AND XIAOSHEN WANG 

ABSTRACT. The root count developed by Bernshtein, Kushnirenko and Kho- 
vanskii only counts the number of isolated zeros of a polynomial system in 
the algebraic torus (C*)n. In this paper, we modify this bound slightly so 
that it counts the number of isolated zeros in Cn. Our bound is, apparently, 
significantly sharper than the recent root counts found by Rojas and in many 
cases easier to compute. As a consequence of our result, the Huber-Sturmfels 
homotopy for finding all the isolated zeros of a polynomial system in (C*)n 
can be slightly modified to obtain all the isolated zeros in Cn. 

1. INTRODUCTION 

A Laurent polynomial p in the n variables x = (Xi, X2, ..., Xn) is given by 

p(X) = E CeX', 
eEA 

wheree = (l en)E Zn e = el . xe where e = (ei,...,en) E Zn, xe = Xl n n Ce E C and A, the support of 
p, is a finite subset of Zn. In short, p is an element of the ring C[x1, ...,xni]. 
A Laurent polynomial system P(x) = (p1(x), ..., Pn(X)) is an n-tuple of nonzero 
Laurent polynomials. Let Ai be the support of pi(x), for i = 1, ..., In. Denote the 
convex hull of Ai, called the Newton polytope of pi, by Pi. Consider the function 

R(A1, ..., An) = Vol(AlPi + * * + AnPn)i 

where Al, ..., An are nonnegative variables, "Vol" denotes the usual Euclidean vol- 
ume in Rn, and 

n 

P + + +Pn ={ ri: ri E Pi Vi} 
i= 1 

denotes the Minkowski sum of polytopes 1Pi, ...,vPn in R . It is well known in 
convex geometry [3] that R(Al ..., An) is a homogeneous polynomial of degree n. 
The mixed volume M(Al, ..., An) is defined to be the coefficient of A1A2 ... An in 
this polynomial. Write C* for the nonzero complex numbers. 

Theorem 1.1. The number of isolated zeros, counting multiplicities, of a Lau- 
rent polynomial system P(x) = (pi(x), ...prn(X)) in (C*)n is bounded above by the 
mixed volume M (A1, ..., AAn). For almost all choices of the coefficients of P(x), the 
number of isolated solutions in (C*)n of P(x) is exactly M((A1, ...,1 An). 
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The root count in the above theorem was developed by Bernshtein [1], Kush- 
nirenko [7] and Khovanskii [6], and it is, therefore, commonly referred to as the 
BKK bound. While this bound is, in general, significantly sharper than the Bezout 
number (and its variants [11]), it only counts the zeros of P(x) in the n-dimensional 
algebraic torus (C*)n. In [9], J.M. Rojas proposed a root count formula in Cn, de- 
rived from the theory of toric varieties, and its computation involves finding the 
mixed volume of n shadowed polytopes in R . 

The main result of this paper can be simply stated as follows: 
Given a polynomial system P(x) = (pI(x), ...,Pn(X)) in C[xi, ..., Xn] , with sup- 

port Ai for pi, i = 1, ..., n, the number of isolated zeros, counting multiplicities, of 
P(x) in Cn is bounded above by the mixed volume M(A1 U {0}, ..., An U {0}). 

Our bound is significantly tighter than the root count suggested in [9]. A simple 
explanation derives from the monotonicity of the mixed volume: growing polytopes 
potentially increases (and never decreases) the mixed volume; and the support sets 
for which we compute the mixed volumes here are usually much smaller than the 
shadowed sets used in [9]. Furthermore, our bound appears to be easier to compute. 
This bound also holds over arbitrary algebraically closed fields [10]. 

Of course, if Ai U {0} = Ai for all i = 1, ..., n (i.e., if each pi already has a 
constant term), then, by Theorem 1.1, our bound is exact when the coefficients of 
the pi's are chosen generically. When 0 0 Ai for some i, we will show in ?2 that 
our bound is exact when the coefficients of the pi's are chosen generically and the 
zeros of P(x) at infinity are nonsingular. An alternative combinatorial criterion 
to guarantee the exactness of this bound is given in [10]. In contrast to the complex 
analytic approach given in this paper, the method in [10] is more algebraic and the 
conditions are formulated in a more general setting. 

The idea of the BKK bound has been used in several different ways in homo- 
topy continuation methods for solving polynomial systems [5, 12, 13]. The lifting 
homotopy approach in [5] is particularly attractive since only a small number of 
homotopy curves need to be followed. Nonetheless, as was pointed out in that pa- 
per, an apparent limitation of the method is that it finds zeros of the polynomial 
system only in (C*)n, and not necessarily all zeros in the affine space Cn. As a 
consequence of our result, we shall show in ?3 that the lifting homotopy approach 
in [5] can be easily modified to obtain all the isolated zeros of a polynomial system 
in Cn. 

2. MAIN RESULTS 

Complex n-space Cn can be naturally embedded in the n-dimensional manifold 

P = {X = (XO,.. Xn) E Cn+1: X :7f (0l ... 0)}/ _ 

where the equivalence relation is given by x y if and only if x = cy for some 
nonzero c e C. The original Cn corresponds to points x = (x0, ..., xn) with x0 = 1, 
and x0 = 0 defines the projective hyperplane of points at infinity. Thus, pn is the 
disjoint union of Cn and the points at infinity. 

Given a polynomial p(x) of degree d in the n variables x1, ..., xn, define 
pXXI, ... , xn) to be the homogeneous polynomial consisting of all the degree- d terms 
of p, and define the homogenization of p to be 

d X1 Xn). P(XOXn) = 
XoP xo.. 
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Note that P is a homogeneous polynomial of degree d in the nr+ 1 variables x0, ..., 

and Pj(1, x1, ..., Xn) = P(X1,..., Xn) and P(O, x1,...,Xn) = P(x1,..., Xn). Geometrically 
speaking, we can define the zero set in pn of the system P = ..., j3n) via the 
disjoint union 

X = { (1u, XI, .vXn)|P(Xl, va, n) = 
Of U f (Oi X1i ... iXn) I P(XI, *-Xn) = ?}- 

Thus, X is the union of the zeros of P in Cn and the zeros at infinity. 
A projective variety is the zero set in pn of a set {fi, ..., fJ of homogeneous 

polynomials in the variables x0, ..., Xn. A quasi-projective variety is the complement 
Y1\Y2 of a projective subvariety Y2 in another projective variety Yi. Since Y2 may be 
the empty set, quasi-projective varieties are generalizations of projective varieties. 
The zero set of a finite number of polynomials in Cn is a quasi-projective variety, 
but not necessarily a projective variety. 

Suppose Y is the zero set in Pn of a set of homogeneous polynomials {fi, ., fr} 
A point y E Y is nonsingular (or regular) if and only if 

ranks -&(fl1 .. . fr) (y) = codim Y. 

where codim Y = n- dimpn Y. A variety is nonsingular if and only if each point 
of the variety is nonsingular. 

The classical Bertini theorem implies that nonsingularity is a generic property. 
A linear system L is a complex vector space generated by homogeneous polynomials 
of some fixed degree, i.e., 

L = {cihiI(ci,...,Cr) E Cr} 
i=1 

for hi, ..., hr E C[xO,..., Xn]. The base locus of L is the set 

{x E Pnhhi(x) = 0, i =0 ,...,r}. 

Bertini's Theorem ([3, Ch. III, ?10.9.2]). Let Y be a nonsingular quasi-projective 
subvariety of pn of dimension m. Let 

r 

L {ciihiICil ..., cr) E Cr} 
i=1 

be a linear system parametrized by Cr. Then there exists a nonzero homogeneous 
polynomial G in r variables such that G(ci, ., cr) 74 0 implies that the intersection 
of Y with the hypersurface 

Zcihi = 0 
i= 1 

is of dimension m - 1 and is nonsingular at each point not in the base locus of L. 

Lemma 2.1. Given a polynomial system P(x) = (P1 (x), ...n (X)) in the vari- 
ables x = (X1, ..., Xn), there exists an open dense subset V of Cn such that if 
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E = (Eli en) c V, then t& E V for all t 7 0 in R1, and if y E Cn is a solution of 

qi =pl(Xli * i n)+E1= 

(1) 

then 
(i) 

raka(qi,..., qn)an c (x1, - , Xn)( 

(ii) 
y E (C,) 

n 

where C* = C\{O}. 

Proof. (i) For i = 1, ..., n, let di be the degree of pi. Write the homogenizations of 
the polynomials in (1) as 

Pl P(XOv i vn) + EJX 
di 

(2) 

dn =Pn(XO,- ) Xn) +EnXod. 

Consider the homogeneous polynomials 

fi = alPl(xo,..,Xvn)?+El6di 

(3) 

fin anPn (XOv a . n) + EnX dnI 

for a- E C, i = 1, ..., n. Let Yo = pn \ {xo = O} = Cn. Yo is a quasi-projective 
subvariety of pn. Consider the linear system {fi } formed by x4d' and PI (xo, ..., Xn) 
as (a1, 61) vary in C2. The base locus of the linear system is contained in {xo = }. 
Therefore, by Bertini's theorem, there exists a nonzero homogeneous polynomial 
GI (al, E1) such that the intersection YO n {fi = O} is a nonsingular quasi-projective 
variety for GI (al, El) 74 0. Since GI is homogeneous, the polynomial HI (E1) = 
G1(1,El) is not identically zero, and therefore vanishes on a subvariety T1 of C. 
Thus, T1 can have only finitely many points, so T- {tT1: t E R1 \ {O}} is 
of one real dimension in C, and its complement V1 in C is open and dense in C. 
The set V1 has the property that if 61 E V1, then tEl E VI for real t 74 0, and 
Y,(El) = YO n { q = 0} is nonsingular and is of dimension n - 1. 

Next, we repeat this process n-1 times to construct Y2, ...,Yn by Yk(6l, ...,Ek) = 

Yki-(6i v * Ek-1) n { k = 0}. Here, Yk-1 is a quasi-projective subvariety of pn of 
complex dimension n-k+1. The base locus of the linear system { fk}, formed by xgdk 

and pk(XO, .X., xn) as (ak, 6k) vary in C2, is contained in {xO = 0}. Hence, it does not 
intersect Yk. Applying Bertini's theorem, for all (61, ..., Ek-1) c Vk_1 there exists 
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an open dense subset V(V1, ..., Ek-i) of C such that for Ek E Vk,' we have tEk E kV 
for real t : 0, and Yk is of dimension n - k and is nonsingular. We can then easily 
show that the set Vk - {(E1,., EOk)(El,...)Ek-1) E Vk-liEk E Vk(El,...,6k-1)} is 

open dense, and invariant under nonzero real scalings. 
We then let V1 = Vn and note that V1 is an open dense set in Cn and for 

E = (El, ..., n) E V1, we have tE E Vl for real t 5 0, and the finite solution set of 

(1) is of zero dimension and nonsingular. The conclusion follows. 

(ii) We will show that for each i = 1, ..., n, there exists an open dense set U2 C Cn 

such that for 6 = (6l, ..., n) E Ui , tE E Uj for real t # 0 and the polynomial 

equations 

qi = pl(Xl,..,Xmn)+61 =0, 

(4) 
qn= Pn(xl,...Xn)+6n =0, 

qn+1- X2, = Ad 

have no common solutions. Then the conclusion follows if we let 
n 

i=1 

The system in (4) is equivalent to the following system of n equations in the 

n - 1 variables x1, ..., Xi1l, xi+l, ... Xn: 

Pi(x 1i... Xi-l0Xi+l,...Xn)?+61 = O0 

(5) 

Pn (Xi Xi-?Xi+i ...~n) + En = 0. 

Denote the system (5) by Q(x, 6). Following the same procedure as in (i), we obtain 

an open dense subset Uj in Cn such that for 6 = (El, ... -,En) e Uj, we have t6 e Ui 

for real t , 0, and for any solution y of (5), the rank of DxQ is n. But this is 

impossible. So, the solution set of (5) is empty. 

To accommodate both (i) and (ii), we may let V = V1 n V2. Then for 6 = 

(6l, ..., En) E V, we have t6 E V for real t = 0, and the assertions in both (i) and 

(ii) follow. 

Lemma 2.2. Given a polynomial system P(x) = (pi(x), ...,pn(x)) in the variables 

X = (X1, ..., Xn), let k6 and k be the numbers of isolated zeros, counting multiplici- 

ties, in Cn of P (x) = (P1 (x) + 61, ...,pn(x) + En) and P(x), respectively. Then, 

(6) k > k 

for small El, En - 

Proof. Let x0 be an isolated zero of P(x) with multiplicity m > 1. Let N be an 

open neighborhood of x0 containing no other solution of P(x) = 0. Let deg(P, N, 0) 

be the Brouwer degree (see [2]), where P(x) is regarded as a function on R2 , the 

space induced by Cn in a natural fashion. In [2] it is shown that deg(P, N, 0) is 

always a positive integer and equal to m. Since the Brouwer degree is invariant 

under small perturbations, for small 6, we have deg(P,, N, 0) = m, where Pa is 
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regarded as a function on Rf2n* Therefore, the number of isolated zeros k, of P, is 
at least as big as the number of isolated zeros k, counting multiplicities, of P(x). D 

Example 1. The system 

X2X2-X 1 + = 0 

X2= 0 

has only one solution, (Xi, x2) = (1, 0). However, its constant-term perturbation 
system 

X2X 2-_X1+1+61 = 0, 

X2 +62 = 0 

has two isolated solutions, namely, 

(X1,X2)= (1 1+462(1 +E) -621 

The following proposition gives a sufficient condition that can be easily verified 
when equality in (6) holds. Recall that for a polynomial system P(xl,..., x,) = 

(pi(xI, ...,Xn), ...,Pn(Xl, ..., Xn)), the zero set at infinity of P is the set {(0, xI, ..., Xn) 
C PnjP(xi, ...,aXn) = 0}, where P(xi, ...,Xn) = (jii(xi, ...,xa), ...,p-(x1, *..,xa)) and 
each j,(x, ...xn) is a homogeneous polynomial consisting of the highest-degree 
termsof Pi (Xi, v * *, Xn) - 

Proposition 2.3. Equality in (6) holds if the zero set at infinity of P(x) = 

(Pi (x), * * , Pn (x)) is nonsingular. 

Proof. Clearly, the zero set at infinity of PF (x) = (pI(x)+, ..., pn (x) +en), denoted 
by So, is the same as that of P(x), denoted by SI. If Si is nonsingular, since small 
perturbations do not change the rank of the appropriate Jacobian, So must also be 
nonsingular. On the other hand, from (i) in Lemma 2.1, the zero set of PF in Cn 
consists of nonsingular isolated points for generic ? = (e, ..En)) namely, if w E Cn 
and Pg(w) = 0, then 

rank 9P(X ., Xn) (w)= n 
0(X1, .*-, Xn) 

Now consider the homotopy H: Cn x [0,1] 
__ Cn defined by 

H(x, t) = (1 - t)PE(x) + tP(x) = 0 . 

It was shown in [8] that when the zero set at infinity of P. (x) is nonsingular and 
equals that of P(x), which is also nonsingular, then any homotopy curve x(t) 
emanating from an isolated zero of P6 (x) at t = 0 always connects to an isolated 
zero of P(x) when t -* 1. From this, the conclusion follows. LI 

Theorem 2.4. For a polynomial system P(x) = (Pi (x), ...,pn (x)), let A1, .., An 
be the supports of P1(x),...,pn(x), respectively. Then, the mixed volume 
M(A1 U {0}, ..., An U {0}) is an upper bound for the number of isolated zeros, 
counting multiplicities, of P(x) = (P1 (x), . .., pn(x)) in Cnt. 
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Proof. For P,(x) = (pI(x)+&i, ...,pn(x)+En), AlU{O}, ..., AnU{O} are the supports 
of p1(x) + El, .., Pn(X) + En, respectively. Thus, 

M(A1 U {O}, ..., AAn U {O}) > the number of isolated zeros 
of P,(x) in (C*)fn (by Theorem 1.1) 

= the number of isolated zeros of P,(x) in Cn (by Lemma 2.1) 
> the number of isolated zeros of P(x) in Cn (by Lemma 2.2). 0 

Corollary 2.5. In the theorem above, fix A1,-, An and now suppose that the sup- 
port of pi is contained in Ai, for i = 1, ..., n. Then 

(i) If 0 E Ai for all i = 1, ..., n, that is, each pi (x) has a constant term, then the 
bound is exact when the coefficients of P(x) are chosen generically. 

(ii) Otherwise, if the zero set at infinity of P(x) is nonsingular for generically 
chosen coefficients, then the bound is exact when the coefficients of P(x) are 
chosen generically. 

Proof. Part (i) is a direct consequence of Theorem 1.1. Part (ii) follows from 
Proposition 2.3 and Theorem 1.1. D 

3. THE HUBER-STURMFELS HOMOTOPY 

One of the major steps in the homotopy continuation approach to solving for 
all the isolated zeros in (C*)fn of a polynomial system P(x) = (p1(x), ...,pn(X)), 
x = (x1,...,xn), suggested by Huber and Sturmfels in [5], can be described as 
follows. 

Let Q(x) be a polynomial system with the same support set as P(x) but with 
sufficiently randomly chosen complex coefficients. By Theorem 1.1, Q(x) has as 
many isolated zeros in (C*)n as its BKK bound, say k zeros. Now, consider the 
homotopy 

H(x, t) = (1-t)Q(x) + tP(x) 

(7) = Q(x) + t(P(x) - Q(x)), t E [0,1],. 

For each t E [0, 1], the support sets of H(x, t) are the same as those of Q(x) and 
the coefficients are generic, so for each t E [0,1] the number of isolated zeros of 
H(x, t) in (C*)t is equal to k. Accordingly, each isolated zero of P(x) in (C*)t 
can be reached by a homotopy curve of H(x, t) = 0, emanating from an isolated 
zero of Q(x) in (C*)t at t = 0. 

In [5], Huber and Sturmfels proposed using the lifting homotopy on H(x, t) in 
(7) to define another homotopy 7-(x, t) (with the same t) with 7-(x, 1) = P(x). 
Then the solutions of the lowest-order terms of the Puiseux series of the solution 
branches of 7-(x, t) = 0 are used as the starting points to follow the homotopy 
curves of N(x, t) = 0. 

This approach is very promising, since only a small number of homotopy curves 
need to be followed. However, as mentioned in [5], an apparent limitation of their 
method is that it finds only the zeros in (C*)n. 

In fact, in order to find all the isolated zeros of P(x) in Cn rather than in (C*)n, 
one needs only to modify the homotopy in (7) slightly by replacing Q(x) with 

QF(x) = Q(x) + &, 

where E = (61, , En) is randomly chosen in Cn. First of all, by Lemma 2.1, all 
zeros of Q,(x) are isolated, nonsingular and in (C*)n. Therefore, the BKK bound 
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ke of Q, (x) equals the number of isolated zeros in Cn of Q (x). Secondly, for each 
to E [0,1), the support of 

H. (x, to) = (1 - to)Q, (x) + toP(x) 

= Qs (x) + to (P(x)-Q (x)) 
= Q(x) + to(P(x) - Q(x)) + (1 -to) 

is the same as that of Q, (x), and by Lemma 2.2, the set of all the isolated zeros 
of H, (x, to) in Cn is contained in (C*)fn and its cardinality must be equal to k,. 
Consequently, there are exactly k, homotopy curves of H, (x, t) = 0 in Cn x [0, 1], 
and any homotopy curve x(t) of H, (x, t) = 0 with x(l) being a zero of P(x), either 
in (C*)n or in Cn, must join one of those k, curves. 
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